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Abstract. The intrinsic length scales of a reaction diffusion system (Gierer-Meinhardt model) is varied by
quasi-statically changing the diffusion constant of the activator and a transition from rolls to hexagon is
detected. The transition is hysteretic or first order like. From stability analysis, we also analytically show
the possibility of such transitions.

PACS. 87.10.+e General theory and mathematical aspects – 47.70.Fw Chemically reactive flows

Patterns like squares, hexagons, rhombus are observed in
chemical systems [1], in Faraday surface wave ([2,3] and
references therein), nonlinear optical systems [4] and in
many other systems. Many reaction diffusion systems have
been studied to show such structures under various am-
bient conditions. The origin, stability and dynamics of
these patterns are subjects of active investigation [5–8].
In a reaction diffusion system the diffusivities are taken
to be constants and the variation in them due to varia-
tion in temperature or other experimental conditions are
considered to be on very small scales to produce any ef-
fect. We argue that if there are some sort of phase tran-
sitions which are hysteretic with the variation of diffusion
constant, then it indeed has relevance to study transitions
under the variation of diffusivities. In a situation when dif-
fusion constants are very close to such transition points, a
slight change in them due to the fluctuations in tempera-
ture etc. of the system might bring about a phase transi-
tion which will not be reversed when the diffusivities are
restored. In another respect such studies are worth doing
to understand how such a system behaves under a slow
variation of its internal length scales. A slow variation of
intrinsic length scale can be effected by slowly varying the
diffusion constant of the system. In the present work we
are going to present and characterize the phase transitions
brought about by the variation of diffusivity of the acti-
vator of Gierer-Meinhardt (GM) [10] model keeping the
diffusivity of the inhibitor fixed. In what follows, we will
show roll patterns are loosing their stability to hexago-
nal structures via a first order like transition. Under the
action of competing length scales, the patterns character-
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ized by wave numbers which locally satisfy the condition
q1+q2+q3+...... = 0 are indeed an impressive general out-
come and regular hexagons are a more symmetric special
case of them.

The Gierer-Meinhardt model that we have taken up is

∂A

∂t
= DA�2A + ρA

A2

(1 + KAA2)B
− µAA + σA

∂B

∂t
= DB�2B + ρBA2 − µBB + σB (1)

where A is the activator concentration and B is that of the
inhibitor species. In what follows, we will always take the
Turing [9] condition DB > DA between the diffusivities of
activator and inhibitor to hold true. In the above expres-
sion ρA and ρB are the reaction strengths, µA and µB are
the self removal rates and σA and σB are the basic pro-
duction terms for A and B respectively. In a parameter
region where steady spatial order of concentration forms,
the relevant length scale is given by [11]

κ2 =
C1

DA
− C2

DB

where C1 and C2 are constants. Thus the diffusivities are
the one which selects the internal length scale of the sys-
tem. The present report comprises of three parts. The next
part shows the results of numerical simulation done under
quasi-static variation of the diffusion constant DA. The
following part accounts for the observations of numerical
simulation on the basis of a stability analysis. The last
part includes discussion.

In our simulation we have set σA = σB = 0. The
other parameters are ρA = µA = 0.01, ρB = µB = 0.02,
KA = 0.25, DB = 0.2 and DA is varied from 0 to 0.01 by
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Fig. 1. The figure shows many domains of locally parallel rolls
separated by domain walls and other defects at a value of the
diffusivity DA = 0.005. In this figure the concentration of the
activator (A) has been plotted on a 256 × 256 lattice space.

the steps of 10−5 near the transition regions and by the
steps of 10−4 in other parts keeping 104 temporal steps
between every variation of DA. The simulation is done on
two dimensions by implementing finite difference method
and on a lattices of size 256 × 256. In the first part of
our two dimensional simulation so long as DA remains
less than approx. 0.004, the locally isolated concentration
peaks show up. Such structures appear for very small value
of DA compared to DB because of the fact that the activa-
tor finds no time to spread compared to very fast inhibitor
spreading. As DA is increased, near DA = 0.004 steady
roll structures which are locally parallel appear and persist
up to DA < 0.008. As Figure 1 shows, many small domains
of parallel rolls are present and are oriented in all possible
directions.These domains are separated by very many de-
fects and domain walls. At about DA = 0.008 a transition
from rolls to almost regular looking hexagonal structures
takes place. This phase is stable up to a DA value about
0.009. On a further increase in DA, hexagonal patterns
loose its stability to a steady homogeneous state. Figures 1
and 2 show the roll structure at DA = 0.005 while in-
creasing DA and hexagonal at DA = 0.0085 as seen in the
lattice. After the hexagons have stabilized at DA > 0.008,
now if we go on decreasing DA the rolls do not come back
at DA = 0.008 but at a much lower value. The transition
from rolls to hexagons show hysteresis. A plot of aver-
age concentration of A against DA is shown in Figure 3
(topmost part). This plot clearly shows a jump in the av-
erage concentration as we go from below along DA axis
which marks the transition to hexagons from rolls at about
DA = 0.008. As we come down the DA axis, we see that

Fig. 2. The figure shows regular hexagonal order in the con-
centration of the activator species A at a value of the diffusivity
DA = 0.0085 on the same space lattice as Figure 1.

Fig. 3. The figure shows a plot for the hysteresis loops ob-
tained at the transition from rolls to hexagons and back for the
rate of variation of DA 0.00001, 0.0001 and 0.0005 from top to
bottom. The broken upper curves are paths along which the
average conc. of A varies when DA is decreasing.

the average amplitude does not immediately jump back to
the lower line at DA = 0.008 but continues to follow the
same upper line representing the hexagons and comes back
to the lower value at around DA = 0.0055 which marks
transition to rolls from hexagons. Thus, Figure 3 shows
hysteresis and identifies the transition to be first order
like. The average activator amplitude also comes out as
a relevant parameter to characterize such situations. The



J. Sienkiewicz and A. Bhattacharyay: Transition to hexagonal pattern under the variation of ... 75

graphs in the middle and the lowest part in Figure 3 are
the same plots but for the rate of change of DA at every
time step by the amount 0.0001 and 0.0005 respectively.
It is clear from the lower two parts of the Figure 3 that
the loop spreads out with the comparatively rapid varia-
tion of DA and the upper (decreasing DA) and the lower
(increasing DA) lines are coming more close making the
hysteresis loops less clearly defined. It appears that the
phase transition does not remain a well defined first or-
der like transition at all the time scales of variation of the
parameter DA and tend to become more and more con-
tinuous at faster variations of DA. Such a dependence of
the nature of transition on the dynamics of variation of
the parameter is very important.

Having numerically found the results let us try to ex-
plain it from analytics. After rescaling of concentration,
length and time as A = µAA, l =

√
DB

µA
l and t = µAt

respectively, equation (1) takes the form

∂A

∂t
= D̄�2A + ρ̄A

A2

(1 + K̄A2)B
− A

∂B

∂t
= �2B + ρ̄BA2 − µ̄BB (2)

where we have taken σA = σB = 0. Under such scaling
we have D̄ = DA

DB
< 1, ρ̄A = ρA

µ2
A

, K̄ = KA

µ2
A

, ρ̄B = ρB

µ3
A

,
and µ̄B = µB

µA
. The homogeneous steady fixed point of

the system is A =
∗
A= 0.0085 (under prevalent conditions

of the simulation) and B =
∗
B= ρ̄B

∗
A

2

µ̄B
= 0.72. A linear

stability analysis shows that inhomogeneous perturbations
will grow with a growth rate λ given by

λ = −1
2


D̄k2 +

2K̄
∗
A

3

ρ̄B

ρ̄Aµ̄B
− 1 + k2 + µ̄B




±






1 − D̄k2 − 2K̄

∗
A

3

ρ̄B

ρ̄Aµ̄B




+(k2 + µ̄B)}2 − 8µ̄B




1/2

. (3)

In the range of given parameter values the real part is
always negative giving no scope for Hopf modes to appear
and in our simulation we have not seen any oscillatory
phase. Since the real part of the growth rate is negative,
an inhomogeneous perturbation will only grow when


1 − 2K̄

∗
A

3

ρ̄B

ρ̄Aµ̄B
− (D̄ + 1)k2 − µ̄B




2

≤


1 − 2K̄

∗
A

3

ρ̄B

ρ̄Aµ̄B
+ (1 − D̄)k2 + µ̄B




2

− 8µ̄B. (4)

Fig. 4. The figure shows the phase diagram as obtained from
linear stability on a D − k2 plane. The roll pattern is stable
in the region below the continuous curve. The hexagons are
stable anywhere above the dotted curve.

Now, the left hand side of the above inequality is always
positive. thus the above condition is also the condition for
the growth rate to be real. After simplifying the above
inequality we get the relevant wave number satisfying the
relation

k4 + k2

Dµ̄B −
(

1 − 2K̄
∗
A

3
ρ̄B

ρ̄Aµ̄B

)
D

+
µ̄B

(
1 + 2K̄

∗
A

3
ρ̄B

ρ̄Aµ̄B

)
D

≤ 0.

(5)
Given the above condition valid we get a range for the

allowed k value given by k2
1 < k2 < k2

2 , where k1 and k2

reads

k2
1,2 =

1 −
(

Dµ̄B + 2K̄
∗
A

3
ρ̄B

ρ̄Aµ̄B

)
2D

±

√(
Dµ̄B + 1 − 2K̄

∗
A

3
ρ̄B

ρ̄Aµ̄B

)2

− 8Dµ̄B

2D
. (6)

In the given parameter range k2
1 is negative, so 0 < k2 <

k2
2 and the boundary is shown in Figure 4 by the contin-

uous line below which the rolls are stable in the D − k2

plane. We see that, k2 varying as 1/D, the growth rate λ
approaches zero as we go on increasing D. The growth rate
decreases because the discriminant in equation (3), which
contributes positively to the growth rate λ, decreases with
increasing D. Now, by increasing DA we are actually in-
creasing D in our simulation and thus approaching the
upper instability boundary where the growth rate of the
rolls are small. In such a region other slow modes become
comparable to the pre-existing rolls and an interaction in
them is responsible for the creation of hexagonal pattern.
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Let us do simple calculations in order to see the possi-
bility of a hexagonal instability to develop near the upper
instability boundary of the rolls. Interesting things show
up if we try to see how a perturbation grows which tends
to rotate the existing roll solutions. To do so we perturb
the roll solutions as A(1 + δa cos (k1 · r)) cos (k · r) so as
to probe a possible rotation of the locally parallel rolls
and we end up with two sets of linear decoupled equa-
tions in δa and δb obtained from harmonic balance of the
terms containing cos (k1 + k) · r and cos (k1 − k) · r. The
equations are(

K̄ +
3A2

4

)
∂δa

∂t
= −

[
D̄

(
K̄ +

A2

2

)
|k1 + k|2

+D̄|k1 − k|2 A2

4

]
δa +

ρ̄AK̄A

B
δa

−
(

K̄ +
3A2

2

)
δa

∂δb

∂t
= −|k1 + k|2δb − µ̄Bδb (7)

and(
K̄ +

3A2

4

)
∂δa

∂t
= −

[
D̄

(
K̄ +

A2

2

)
|k1 − k|2

+D̄|k1 + k|2 A2

4

]
δa +

ρ̄AK̄A

B
δa

−
(

K̄ +
3A2

2

)
δa

∂δb

∂t
= −|k1 − k|2δb − µ̄Bδb. (8)

It is apparent from the shape of above two sets of equa-
tions that a simultaneous validity of them requires k1 to
have two values such as k1 = k11 and k1 = k12 where
|k11| = |k12| and k11 & k12 are at angles θ and π ± θ
with the direction of k. Such a choice of k1 predicts de-
velopment of rhombic structures at the cost of rolls. But
we have not been able to stabilize such structures. A reg-
ular hexagon grows when |k11| = |k12| = |k| and θ = 60◦
along with the case |k11| = |k12| = 0 where the origi-
nal roll grows on the same footing as the combined ones
to form the hexagon. In such a situation we get all the
three wave numbers, one being that of the preexisting roll
whose growth rate is the same as other two new modes
which are locally rotated at 60◦ with it, grow equally in
the concentration of the activator A obeying the equation
as follows(

K̄ +
3A2

4

)
∂δa

∂t
= −D̄|k|

(
K̄ +

3A2

4

)
δa +

ρ̄AK̄A

B
δa

−
(

K̄ +
3A2

2

)
δa.

Here A is the amplitude of the steady roll pattern and
we will treat it as a constant such that K̄A2 is of O(1).
We will do so without trying to actually solve for A be-
cause it takes to solve an equation which is 7th order in

the power of A to get it as a fixed point of the system at
least in the presence of a homogeneous steady state. The
above approximation is quite reasonable in view of the fact
that K̄ is the saturation constant of the system. Moreover
the basic homogeneous steady state has a very small con-
centration in the activator which implies the saturation is
achieved mainly by the contribution from the steady roll
amplitude. The ratio A/B can easily be shown to be equal
to (k2 + µ̄B)/2a0ρ̄B) where a0 is the concentration of the
activator of the homogeneous state in presence of which
a steady roll develops. In what follows we will take a0 of
the same order as the basic homogeneous steady state.
With all these things taken into account the growth rate
is given by

λhex =
(

ρ̄A

2a0ρ̄B
− D

[
1 +

3
4
K̄A2

])
k2

+
(

ρ̄Aµ̄B

2a0ρ̄B
−

[
1 +

3
2
K̄A2

])
. (9)

The second part of the above expression is negative. Thus,
the growth rate is positive for

D ≤ Dmax =
2ρ̄A

7a0ρ̄B
. (10)

So we approximately get D ≤ 0.17 which sets the up-
per boundary for the hexagonal phase to exist. Within
this range of diffusion constant the wave number for the
hexagonal pattern on the instability boundary is given as

k2 ≥
5
2 − ρ̄Aµ̄B

2a0ρ̄B

ρ̄A

2a0ρ̄B
− 7D

4

. (11)

This curve is also plotted in Figure 4 as a broken line.
The region above this line (and for D ≤ Dmax) is where a
hexagonal instability grows. Since the typical wave num-
ber k of hexagon goes as

√
C1/(C2 − D), where C1

and C2 are constants, its the least at D = 0 and the
growth rate being proportional to k2 is small and can-
not compete with rolls which has its typical wave num-
ber as

√
1/D and higher growth with bigger k. Suppose

the role state formed at small D persists up to its up-
per instability boundary. Let us look at Figure 5 which
is the same as Figure 4 along with some extra diagram.
When one crosses the upper instability boundary for rolls
at the point A towards hexagons by increasing D, a tran-
sition from rolls to hexagons takes place. Let us take
D = Dforward where the transition occurs. A subsequent
increase in D might result in an increase of the wave
number of the hexagon because the typical wave number
goes as

√
C1/(C2 − D). Since growth rate of hexagons

are higher for higher k the wave number can also grow to
some extent even at a fixed D. An increase in the wave
number takes us at a higher point in the D−k2 plane than
where we actually crossed the instability boundary. Now,
if we start decreasing D and go backward the path along
which we move should be that horizontally crossing the in-
stability boundary at B in Figure 5. This is so because the
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Fig. 5. This figure shows the same phase diagram as in Fig-
ure 4. It has been considered that the forward and backward
transitions from rolls to hexagons are taking place at points A
and B respectively

decrease in D should not result in an associated decrease
in the wave number k to slower the growth. Now, the back-
ward transition taking place at D = Dbackward, the region
of hysteresis is given by Dhyst = Dfoward − Dbackward.
A comparatively rapid variation of D near the instability
boundary may not simply allow the system in the hexag-
onal phase to attain correspondingly higher wave num-
bers and thus while coming back it will lower the point B
where the backward transition takes place. So, the region
of overlap will decrease and thus, from simple arguments,
we get a qualitative information about the dependence of
the hysteresis on the rate of the variation of the diffusivity.

In the conclusion, we would like to mention that
a transition from rolls to hexagons has been observed
with increasing diffusivity of the activator species in the
GM model. The transition shows well defined region of
hysteresis when the diffusivity is varied on a very slow
rate. With the increase in the variation rate of D the
region of hysteresis becomes shorter. We also qualitatively
show from simple analytic arguments that there can be a
first order like phase transition from rolls to hexagons. We
have numerically seen that the hexagons loose stability
to a homogeneous steady state at higher diffusivity. Cal-
culations also show that there is an upper D value marked

as Dmax beyond which hexagons would not grow. The fact
that rolls are preferred to hexagons at smaller D are qual-
itatively accounted for from the knowledge of the typical
wave numbers and growth rates of the respective phases.
Let us make a comment on the decoupled sets of equa-
tions – equation (7) and equation (8) – which we have got
because we have not taken into account the homogeneous
steady state in presence of which a nonlinear roll solution
can stabilize. Had we taken that state into consideration
when we perturbed the rolls we would have got coupled
equations. Since the presence of the homogeneous steady
state does not play a role in the formation of hexagonal
instability, which is generated by the nonlinear interaction
of the instability (cos(k1 ±k) · r terms) with the preexist-
ing rolls, and moreover considering the very small value
of the activator concentration in the homogeneous steady
state we think that it would have negligible effect to alter
the qualitative results arrived at except increasing com-
plexity of the algebra. Thus, although the inhibitor parts
in the decoupled equations actually show decay one can
imagine that if the coupling is restored it will also grow
to produce the corresponding structure to the activator.
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